

Max-Planck-Institut für Plasmaphysik

Benefits and Challenges of the Use of High-Z Plasma Facing Materials in Fusion Devices

Rudolf Neu

Max-Planck-Institut für Plasmaphysik 85748 Garching, Germany <u>Rudolf.Neu@ipp.mpg.de</u> The road to tungsten may be long and tedious...

A brief look into history

- vacuum compatibility of PFCs was first priority in early devices
 - \rightarrow gold plated stainless steel liners in ORMAK
- low low-Z content → higher edge temperatures & higher performance, better core confinement but higher sputtering source
 - → impurity accumulation hollow T_e in PLT when using W limiters
- need for low-Z PFMs, availability of vacuum grade graphite and benign behaviour under thermal overload
 - \rightarrow adoption of C PFCs in almost all fusion devices
- operation with high current high density and/or divertor allows to use refractory (high-Z) metals (low plasma temperatures in contact with PFCs!)

Benefits and Challenges of High-Z PFMs

- Why do we need a substitute for C based materials
- Experiences in present day machines
 - ,High'-Z devices
 - diagnostic for W
 - hydrogen retention
 - W erosion
 - W concentrations and transport
 - behaviour under powerload
 - effect of n-irradiation
- Extrapolation to ITER
- Summary / remaining issues

Motivation to abandon C-based materials in a future reactor

- fuel retention by co-deposition with C
- high erosion of low Z materials
- stability against neutron damage

Challenges for operation of a full high-Z device:

- tolerable impurity level much lower than for low-Z ($c_C \le 10^{-2}$, $c_W \le 5 \times 10^{-5}$)
- reliable tokamak operation scenarios
- compatibility of standard & advanced H-mode scenarios with a full high-Z wall
- compatibility of heating methods: ICRF

High-Z devices: TRIAM-1M, FTU, Alcator C-Mod, ASDEX Upgrade High-Z test PFCs: JET, JT-60U, TEXTOR

Other important constraints

Material properties, change under n-irradiation, diagnostic issues, ...

Int. ITER Sum. School, Aix en Provence, June 22-26, 2009

R.Neu

Rationales for plasma facing materials

Low erosion rates:

- → low power loss by dilution / radiation originating from impurities
- \rightarrow long lifetime of PFCs
- \rightarrow low dust production
- \rightarrow low T co-deposition

Rationales for plasma facing materials

Low erosion rates:

- → low power loss by dilution / radiation originating from impurities
- \rightarrow long lifetime of PFCs
- \rightarrow low dust production
- \rightarrow low T co-deposition

Low atomic number

 \rightarrow low radiation loss parameter

Losses through

dilution (low-Z) : $n_{DT} = n_e(1 - Zn_Z)$ radiation (high-Z) : $P_{rad} / V = L_Z n_Z n_e$

Int. ITER Sum. School, Aix en Provence, June 22-26, 2009

Rationales for plasma facing materials

Low erosion rates:

- \rightarrow low power loss by dilution / radiation originating from impurities
- \rightarrow long lifetime of PFCs
- \rightarrow low dust production
- \rightarrow low T co-deposition

Low atomic number

Losses through

 \rightarrow low radiation loss parameter

Boundary Conditions for PFMs in a Reactor Integrated approach necessary

Boundary Conditions for PFMs in a Reactor Integrated approach necessary

Benefits and Challenges of High-Z PFMs

- Why do we need a substitute for C based materials
- Experiences in present day machines
 - ,High'-Z devices
 - diagnostic for W
 - hydrogen Retention
 - W Erosion
 - W concentrations and transport
 - behaviour under powerload
 - effect of n-irradiation
- Extrapolation to ITER
- Summary / Remaining Issues

FTU (ENEA Frascati)

IPP

- "all metal" tokamak
 (R = 0.93 m,
 a = 0.28 m,
 B_t ≤ 8T,
 - I_P ≤1.6 MA)
- first wall
 SS + boronisation
- poloidal limiter (untill 1994)
 SS, Inconel,
 TZM, W
- toroidal limiter (since 1995)
 TZM (~ 1 m²)

Toroidal limiter

FTU vacuum vessel

Alcator C-Mod (MIT)

W divertor in ASDEX Upgrade (1995/1996)

- 0.5 mm W (PS) on graphite tiles
- coverage of 90% of the strike zone
- no damage during operation:
 - 800 plasma discharges,
 - heating powers up to 10 MW
 - max. average heat load \leq 6 MW/m²

Full W ASDEX Upgrade from 2007 on

ASDEX Upgrade (full W since 2007)

W coatings on fine grain graphite:

- main chamber, inner divertor: PVD 3-5 μm
- outer divertor VPS 200 μm → PVD 10 μm

from 2009 on

JET ITER-like Wall Project (from 2011 on)

Full metal device: inertially cooled

Be main chamber

- bulk limiter and dump plates
- Be PVD coating on Inconel W divertor /

high power / fluency areas

- tile 5: bulk tungsten
- divertor (except tile 5),
 main chamber (mainly NBI shinethrough areas):
 10 20 µm PVD coating

JET ITER-like Wall Project Layout of Bulk W Tile (Tile 5)

JET ITER-like Wall Project (from 2011 on)

		<u>Confinement</u>
<u>PIS</u>	CES-B De	<u>evices</u>
lon flux (m ⁻² s ⁻¹)	10 ²³	10 ²³ - 10 ²⁴
lon energy (eV)	20-300 (bias)	10-300 (thermal)
Heat flux (MW/m ²)	1-10	1-10
T _e (eV)	2-40 (thermal)	1-100 (thermal)
n _e (m ⁻³)	10 ¹⁷ -10 ¹⁹	10 ¹⁸ -10 ²⁰
Impurity fraction (%)	0.03-10	1-10
B (Gauss)	200-1000	10,000
Pulse length	continuous	10-30 sec
Fluence/disch.(m ⁻²)	up to 10 ²⁷	10 ²⁴ - 10 ²⁵
Target materials	C,W,Be,Li	C,W,Be,etc.
and coatings	(any unirradiated	(t
Surface Temp(°C)	RT-1100	RT-500
Plasma species	H,D,He	H,D,T,He

R. Doerner et al., UCSD

nple:

Devices for power loading of (W) PFCs

A. Zhitlukhin, 17th PSI, 2006

steady state:

plasma generators, ion beams, e beams

transients:

e beams, plasma guns, quasi stationary plasma accelerators

QSPA plasma parameters (ELMs):

Heat load ٠

- $0.5 2 MJ/m^2$
- Pulse duration
- Plasma diameter
- Magnetic field
- lon impact energy $\leq 0.1 \text{ keV}$
- Electron temperature
- Plasma density

- 0.1 0.6 ms
 - 5 cm
 - **0** T

 - < 10 eV
 - $\leq 10^{22} \text{ m}^{-3}$

•

- Why do we need a substitute for C based materials
- Experiences in present day machines
 - ,High'-Z devices
 - diagnostic for W
 - hydrogen retention
 - W erosion
 - W concentrations and transport
 - behaviour under powerload
 - effect of n-irradiation
- Extrapolation to ITER
- Summary / remaining issues

S/XB for WI (400.9nm)

Calculations of S/XB for W I (400.9 nm) I Beigman et al. PPCF 49 (2007) 1833

- ionisation rate
 - ATOM code calculations (lowest configurations)
- excitation rate:
 - semi-empirical v. Regemorter
 formula (complicated coupling
 scheme + configuration mixing)
 - corona approximation: only
 excitation from 'ground' state

Spectroscopic diagnostic of fusion plasmas Ionisation shells in the central plasma

typical radial plasma profiles ionisation equilibrium (a) ↓ 6 governed by n_e [1⋅10¹⁹ m⁻³ **Coronal approximation** T_e [keV] $\frac{\partial}{\partial t}n_Z + \nabla \vec{\Gamma}_Z =$ (b) W^{26+} $n_e(n_{Z-1}S_{Z-1}+n_{Z+1}\alpha_{Z+1})$ W^{46+} W³⁰⁺ W³²⁺ $-n_Z S_Z - n_Z \alpha_Z)$ use of the sport on W^{44+} W^{34+} W^{48+} W²⁸⁺ weak influence of W^{42+} plasma transport on shell structure W^{50+} 0.01 0.0 02 0.6 0.8 0.410 ho_{pol} $\vec{\Gamma}_{Z} = D_{Z} \nabla n_{Z} + v_{Z} n_{Z}$ ionisation shells with (colored) / without (black) transport

Spectroscopic diagnostic of fusion plasmas Impurity concentrations from LOS measurements

Comparison of measured I_M and calculated I_C intensities

$$I_c = \frac{1}{4\pi} \int_{\ell} h \nu n_x n_e \langle \sigma v_e \rangle dl$$

- n_x density of impurity in ionisation state x n_e electron density
- $<\sigma v$ excitation rate coefficient

$$n_x = C_{imp} \cdot f_x \cdot n_e$$

- $\begin{array}{ll} f_x & \mbox{ fractional abundance of the impurity} \\ & \mbox{ ionisation state } x \end{array}$
- C_{imp} impurity concentration

W Spectroscopy in the VUV and SXR Revision of ionization equilibrium

Deduced fractional abundance versus temperature different discharges: symbols different spectral lines: colours

Use of CADW ionisation rates (S.D. Loch, PRA 2005) and adjustment of recombination rates allows good description of emissions of W²⁴⁺ - W⁴⁸⁺

Th. Pütterich (PPCF 50 2008 085016)

W Spectroscopy in the VUV and SXR Revision of ionization equilibrium

Calculation and (Benchmarking) of Spectra for AUG and ITER

- Why do we need a substitute for C based materials
- Experiences in present day machines
 - ,High'-Z devices
 - diagnostic for W
 - hydrogen retention
 - W erosion
 - W concentrations and transport
 - behaviour under powerload
 - effect of n-irradiation
- Extrapolation to ITER
- Summary / remaining issues

Strongly reduced D retention after transformation to W PFCs in ASDEX Upgrade

deposition areas: strong reduction of D co-deposition with C erosion areas: slight increase due to diffusion in W

consistent with laboratory results and particle balance measurements

retention ~ independent of density when normalized to divertor ion fluence

B. Lipschultz et al., PSI 2008 and NF49 (2009) 045009

Co-deposition ratio from laboratory and linear devices

- Why do we need a substitute for C based materials
- Experiences in present day machines
 - ,High'-Z devices
 - diagnostic for W
 - hydrogen retention
 - W erosion
 - W concentrations and transport
 - behaviour under powerload
 - effect of n-irradiation
- Extrapolation to ITER
- Summary / remaining issues

W erosion yield

- W sputtering yields 100-1000 times smaller than for C, but strongly dominated by low-Z intrinsic impurities
- hints for prompt redeposition of W
- very small migration into main chamber
- even larger yields (> 10⁻²) in TEXTOR

K. Krieger JNM 266-269 (1999) 207

R.Neu

Increase of limiter W sources and W concentration with ICRH in AUG

ICRF heating causes strong increase of limiter erosion and W concentration

- W sputtering induced by accelerated particles in rectified sheath
- limiter source much more ,efficient' than divertor source (> 5 times, depending on discharge parameters)

similar results for Mo sputtering at C-Mod

correlation also found for increased limiter source in radial scans

R. Dux, JNM 390-391 (2009) 858

Int. ITER Sum. School, Aix en Provence, June 22-26, 2009

ELM Cycle at Low Divertor Density

ELM Cycle at Higher Divertor Density

R. Dux, JNM 390-391 (2009) 858

ELM resolved W erosion in the outer divertor of AUG

ELM: edge localized modes

- → periodic release of energy and particles at the edge
- 'hot' divertor: $T_e \sim 20 \text{ eV}$
- similar erosion profiles during ELMs and between ELMs
- ELM contribution ~ 50%
- 'cold' divertor: $T_e \sim 6 \text{ eV}$
- between ELMs erosion much smaller, highest erosion far in the scrape of layer → 'semi'-detached
- ELM contribution > 80%

erosion mainly by intrinsic low-Z impurities

R. Dux, JNM 390-391 (2009) 858

R.Neu

39

- Why do we need a substitute for C based materials
- Experiences in present day machines
 - ,High'-Z devices
 - diagnostic for W
 - hydrogen retention
 - W erosion
 - W concentrations and transport
 - behaviour under powerload
 - effect of n-irradiation
- Extrapolation to ITER
- Summary / remaining issues

Control of high-Z transport

Impurity behaviour Alcator C-Mod / FTU

General behaviour (c_{Mo})

- (very) high during low density limiter phase
- strongly decreasing with density
- at high density 2-3 lower in divertor phase
- (also from comparison with FTU) •
- 2-5 times higher in H-Mode compared to L-Mode
- reduction by 2-10 through boronisation

1

c_{Mo} in C-Mod

► 10⁻

 10^{-4}

10⁻³ -

10⁻⁵ ⊧

Mo concentration

limiter operation

boronized

divertor operation

unboronized

(ohmic)-

(ohmic)

43

Impurity Behaviour TEXTOR (FZ Jülich)

usually no high-Z accumulation, but only small fraction (< 10%) of PWI (particle/ power flux) on high-Z components

W accumulation for

- ohmic discharges above critical plasma density
- high level of (edge) radiation

central high-Z contamination depends strongly on transport (RF heating beneficial)

R.Neu

W behaviour in AUG Reduction of W content by increasing ELM frequency

I

W behaviour in AUG Suppression of central impurity peaking

Central wave heating strongly suppresses impurity peaking

central W accumulation connected to electron density peaking can be controlled by central heating and/or gas puff

neoclassical transport decreases with Z small increase of anomalous transport sufficient

Suppression of W accumulation in JT-60U

Toroidal rotation velocity at $\rho\text{=}0.05$ (km / s)

• W accumulation provoked by counter NBI

- Strong suppression of W accumulation by central heating (increase of turbulent transport / destabilization of sawteeth)
- AUG results confirmed

T. Nakano et al., 22nd IAEA FEC 2008, EX/P4-25

- Why do we need a substitute for C based materials
- Experiences in present day machines
 - ,High'-Z devices
 - diagnostic for W
 - hydrogen retention
 - W erosion
 - W concentrations and transport
 - behaviour under powerload
 - effect of n-irradiation
- Extrapolation to ITER
- Summary / remaining issues

- Liquid W jet moves up with velocity of about 1.5 m/s
- Material loss: 2.85 g of W removed from the ero. channel in 1s
- Motion of molten W and outward propagation of the jet are due to the thermo-emission current
- Variation of the depth of the erosion channel in pol. direction probably due to additonal heat transfer by liquid metal flow

W behaviour under high heat loads

- recrystallisation starts above ~1200° C (lower fracture toughness)
- no enhanced erosion found close to melting
- re-solidified surfaces are prone to increased power loads

Under transient heat loads

- development of cracks
- (fatigue, below melt-temperature)
- melt layer movement and losses due to jxB force, plasma pressure, ...
 (e-beam, plasma gun, QSPA experiments: very difficult to adjust to ITER parameters)

TEXTOR test limiter experiments with W-macrobrush structures

G. Sergienko et al., JNM 390-391 (2009) 858

Damage thresholds for CFC and W under ELM-loads

Droplet ejection @ $E = 1.6 \text{ MJ/m}^2$

- During the first shot droplets ejected mainly from the edges of the tiles.
- As a result of edge smoothing and bridging of gaps the droplet ejection was reduced and mass losses were decreased. A. Zhitlukhin et al., SRC RF TRINITI, Troitsk

Bridge formation @ $E \ge 1 \text{ MJ/m}^2$

B. Bazylev et al., JNM 390–391 (2009) 81

IPP

- Why do we need a substitute for C based materials
- Experiences in present day machines
 - ,High'-Z devices
 - diagnostic for W
 - hydrogen retention
 - W erosion
 - W concentrations and transport
 - behaviour under powerload
 - effect of n-irradiation
- Extrapolation to ITER
- Summary / remaining issues

J. Linke, Phys. Scr. T123 (2006) 45–53

Thermal fatigue testing of a W macrobrush module irradiated in the HFR-Petten

Thermal fatigue testing of W monoblock mock-ups

	W-monoblock	W-monoblock	W-lamellae design				
	ENEA	CEA	2. Plansee AG				
unirradiated		1000 x 9.6 MW/m ²	1000 x 7.5 MW/m ²				
	1000 x 14.5 MW/m ²	1000 x 18.0 MW/m ²	1000 x 14.4 MW/m ²				
0.1 dpa T _{irr} = 200°C	1000 x 10.0 MW/m ² 100 x 13.7 MW/m ² 1000 x 17.9 MW/m ²		1000 x 10.0 MW/m ² 1000 x 13.7 MW/m ² 1000 x 18.1 MW/m ²				
0.6 dpa T _{irr} = 200°C		1000 x 10.0 MW/m ² 1000 x 13.7 MW/m ² 1000 x 18.0 MW/m ²	1000 x 14.0 MW/m ² 1000 x 17.1 MW/m ²				
J. Linke, Phys. Scr. T123 (2006) 45–53 no failure observed !							

Int. ITER Sum. School, Aix en Provence, June 22-26, 2009

~0.0001/W @ 500°C. • 200°C: trapped D is limited by slow

neutron fluence: ~0.005/W @ 200°C,

traps produced during ITER lifetime

T retention in (neutron) induced traps

kinetics, i.e. permeation. (uptake rate and D concentration in solution, is three orders of magnitude $= 10^{-4}$ smaller than predicted by model based on diffusion and surface recombination!)

- 40°C: smaller trapping due to slower kinetics
- 500°C: smaller trapping due to annealing of damage.

\Rightarrow low T inventory in W from trapping due to neutron damage in ITER.

Int. ITER Sum. School, Aix en Provence, June 22-26, 2009

B. Wampler et al. PFMC Jülich 2009

- Why do we need a substitute for C based materials
- Experiences in present day machines
 - ,High'-Z devices
 - diagnostic for W
 - hydrogen retention
 - W erosion
 - W concentrations and transport
 - behaviour under powerload
 - effect of n-irradiation
- Extrapolation to ITER
- Summary / remaining issues

Wall loads in future confinement experiments

		W7-X	ITER	R	reactor
heat flux FW / MWm ⁻²		th a read for	1		< 1
heat flux divertor / MWm ^{-2_}	J		igue 20)	≈ 5 - 20
VDEs / MJm ⁻²		?	60		_
disruptions / MJm ⁻²		thermal sh	<mark>ock</mark> ⊧10		-
ELMs / MJm ⁻²		?	<1		?
neutron fluence / dpa		degradatio	n, embr	ittler	nent ₀

Extrapolation to ITER: Safety Limits

Extrapolation to ITER: Edge W concentrations

W erosion and edge plasma contamination in ITER from **DIVIMP calculations for several B2-E backgrounds** (edge transport not fully understood!) W conc. remain under 2.10⁻⁵ for any coverage level by W PFCs in ITER and high density operation (weakly influenced by seeding, D_{an} & parallel flows) 1.000E12 W density [m⁻³] 1.000E14 2.8E+16 1.000E16 2.8E+15 -3 1.000E18 1.000E19 <u>س</u> ۲ 1.4E+13 2.8E+12 1.4E+12 2.8E+11 1_4E+11 2.8E+10 W erosion flux[m⁻² s⁻¹] -5 K. Schmidt, JNM 363-365 (2007) 674 5.5 4.5 5.0 6.0 6.5 3.5 4.0 X [m]

Extrapolation to ITER: Central impurity transport

25 **No W accumulation** 1.5 expected in ITER if 20 n (10²⁰m⁻³) $D_{an} \ge D_{neo}$, $(v/D)_{an}$ not T (keV) 15 1.0 DT increasing with Z 10 (as predicted, see 0.5 He x10 5 C. Angioni et al., PPCF 49 (2007) 2027) 0.0 0 е an 1.00 E D (m²s⁻¹) calculations using c/cedge 0.10 Q=10, P_{NBI}=40 MW, U_{loop}=75 mV 0.01 D_{neo}, v_{neo} from NEOART 0.5 0.0 0.5 1.5 2.0 0.5 1.0 1.5 2.0 1.0 0.0 $(v/D)_{an}$ from fit to GLF23 r (m) r (m) D_{an} varied R. Dux et al., 20th IAEA FEC 2004, EX/P6-14

Summary

- D-retention in metals low (lab. exp., AUG), but high retention in C-Mod not yet resolved
- 'destructive' transients (large ELMs, disruptions) not accessible in present day machines (except large ELMs in JET, disruptions in C-Mod)
- erosion of high-Z materials mainly by low-Z impurities transients and accelerated particles (ICRF) play significant role
- main chamber sources dominate plasma impurity density although much lower than divertor source
- AUG achieves similar performance as in boronized C device, using
 - sufficiently high particle transport in the plasma centre by central heating
 - flushing of pedestal by sufficiently high ELM frequency
- safety limits (T retention / Dust / Erosion) best for full metal / full W ITER
- extrapolation of edge/central transport seems favourable for ITER

Remaining Issues and Extrapolation to ITER and DEMO

- mixed materials effect (He, low-Z) on surface morphology / D retention
- effect of divertor damage / behaviour of melt layers under tokamak conditions
- optimization of plasma edge / antenna design (reduction of parasitic electrical fields) for reduction of W source during ICRF
- effect of pellet ELM pacemaking and RMP ELM suppression:
 - evolution of edge plasma parameters / W source
 - penetration into confined plasma / flushing
- ⇒ JET ILW and lab experiments combined with modelling may close some of the gaps to ITER in the near future

DEMO: step in plasma physics much smaller compared to step in PWI!

- PFC: full W (or and W and steel)
- high PFC temperature necessary: good for annealing of defects and Tretention but low margin for transients, large T diffusion
- high n-fluence: dpa ~100 times larger as in ITER

Properties of candidates as PFM

	Be	CFC	W
atomic number Z	4	6	74
max. allowable concentration in the plasma	~3 %	~2 %	~20 ppm
thermal conductivity λ [W/ mK]	190	200 500	140
melting point [°C]	1285	>2200 (subl.thr.)	3410
coefficient of thermal expansion [10 ⁻⁶ K ⁻¹]*	11.5	~ 0 **	4.5
n-irradiation behaviour	swelling	decrease in λ	activa- tion

** NB31 in pitch fiber direction

Thermal conductivity of different plasma facing materials

ITER: substantial amount if ICRH, high power densities at antenna: ⇒ erosion of Be first wall / limiters and W baffles must be kept low

- further investigations on acceleration mechanism (near field/far field)
- optimization of operational conditions (density, phase, ...)
- reduction of box currents / electrical fields by improved antenna design